
The Delphi 3 Novelty Store: 1
by Brian Long

Delphi 3 is Borland’s new incar-
nation of the award-winning

RAD tool we all know and love. It
has been quite well known that
Borland C++ Builder and Delphi 3
have both been developed over the
same period of time for delivery at
similar times. It has also been fairly
well known that the code names for
these two products were Ebony
and Ivory respectively. Today we
are going on an Ivory hunt.

Borland have put an awful lot of
effort into adding new features and
functionality to what was already
in place in Delphi 2. The general
areas include EXE generation, data-
base and Internet-related things.
There are so many new bits and
pieces that I cannot fit them all into
one article, so some information
will have to wait until next month.

These previews are written on
the basis of pre-release product
versions and, amongst others, the
new database features are quite,
how can I put this delicately,
dynamic in their nature. As a conse-
quence it may turn out that some
bits and pieces are a bit different in
the shipping product to the de-
scriptions in these articles. I under-
stand that most of the pending
changes are specifically aimed at
simplifying the use of various new
product features.

First this month, we will take a
look at the new environment.

IDE Updates
The Delphi development environ-
ment has had a face lift. The first
thing you notice when you launch
the IDE is that all the speed buttons
on the speed bar and components
on the component palette (which
are implemented as speed but-
tons) have the new flat look that
Microsoft has added to Internet
Explorer 3.0 (see the screen shot
on this month’s cover). The
TSpeedButton component has a new
property called Flat to allow you to
take on this look and feel. The TDB-
Navigator also has a Flat property

to make its constituent speed but-
tons merge in with the background
(TMediaPlayer, however, does not).

The next thing you spot when
you compile your first application
is that the editor has a visible left-
hand gutter (see Figure 1). No more
will we all add breakpoints by
mistakenly clicking on a very un-
obvious gutter in the first few milli-
metres of the editor. Whilst on the
subject, a little tip for Delphi 1 or 2
users is to set the editor’s right-
hand margin to be at column 0. This
makes the presence and position of
the gutter much more evident.

This new gutter takes ideas from
Turbo Debugger. It shows you
which source lines have machine
instructions generated for them, as
well as showing where breakpoints
have been set and displaying editor
bookmarks.

A few other obvious IDE things to
notice are some changed and some
new menus. Delphi 1 had an
Options | Environment... menu
item. Delphi 2 changed this to Tools
| Options... which was confusing
since it wasn’t clear what options
it referred to. Delphi 3 addresses
this by changing it to Tools |
Environment Options...

This dialog’s Preferences page
has an option to configure the loca-
tion of a shared Object Repository.
The Repository defaults to the
ObjRepos Delphi subdirectory but
can be relocated elsewhere. This
was always possible by adding a
BaseDir string value into Delphi 2’s

Repository key in the registry, but
it is now all formalised into the IDE.

Borland have bowed to Micro-
soft terminology and now all the
experts in this product (and in C++
Builder) are called wizards (de-
spite some Microsoft employees
wincing at the term), so the Data-
base menu has a Form Wizard...
option.

The Run | Parameters... menu,
which previously allowed you to
specify command-line parameters
for your application, now also
allows you to specify a host appli-
cation. This is to enable DLL debug-
ging support, something that
Delphi has been sorely lacking
since its inception. Unlike Turbo
Debugger, you debug an EXE or a
DLL. You can’t step from a Delphi
EXE project straight into a Delphi
DLL project, but it is much better
than nothing.

The next noteworthy item on the
agenda is on the Search menu: there
is now a multi-file search option in
Find in Files... (see Figure 2). It’s
really useful being able to search
for something throughout all the

➤ Figure 1

➤ Figure 2

18 The Delphi Magazine Issue 20

files in your project, or in a direc-
tory (with the option of including
subdirectories). Rather pleasantly,
the search operates in a back-
ground thread, so you can get on
using the product whilst a large
search takes place. The list of oc-
currences of the search text are
placed in the editor message win-
dow indicating the file name and
line number. Double clicking on
these brings the file into the editor
with the cursor on the appropriate
line.

All the other new menu items are
to do with new features such as
Web application deployment and
ActiveX control registration, type
library viewing and COM interface
modifications. We will get onto
each of these subjects as we
proceed through the tour.

The undocumented registry
string value EnableCPU in the Delphi
3.0 Debugging key still works. If you
set this to 1 a new CPU Window menu
item appears next time you launch
Delphi. This looks much better
than it was in Delphi 2 (in fact it
looks the same as the documented
CPU window in C++ Builder) but the
local menus generally don’t do any-
thing and I seem to get a lot of
debugger crashes when it is active,
which might explain why it is
undocumented.

I’ll just briefly mention that the
Win95 page of the component pal-
ette has now been renamed the
Win32 page, in honour of Windows
NT 4 now offering support for these
controls. There is also a new page
called Decision Cube that we will
come back to, but what shall we
look at next? More editor features I
think.

When you have a block of text
highlighted, the editor allows you
to drag it to a new destination, just
as in Microsoft Word. Additionally,
holding the Control key down be-
fore you start dragging allows text
copying. It takes a while to get used
to it and you may find you move
text blocks accidentally when just
intending to highlight a block of
code. If you find yourself in the
throes of moving a block you did
not intend to, simply drag the
cursor back to the block and you
will drop it where it came from.

Another drag and drop feature
allows you to drag a file from
Windows Explorer and drop it into
the editor: the editor duly opens it.
Okay, I admit that this feature has
been around since Delphi 1 but I
only found out about it the other
day, so it feels new to me.

Code Insight
One of the nattiest additions in my
humble opinion is referred to gen-
erically as Code Insight. This is in
fact a set of editor time savers.
Most of them operate by the envi-
ronment constantly scanning edi-
tor source code and the contents
of accessible units in a background
thread. These features are similar
to the sort of things that Visual
Basic 5 offers in its environment.

First off is Code Completion. If
you type in an object name (even
one of your own) and then type a
period [what us Brits like to call a
full stop! Editor] in preparation for
typing a method or property name,
a listbox magically pops up with all
possible values available (see
Figure 3). Select an entry and press
Enter and it’s typed in for you, with
nice consistent case usage and
never a typo to be found. If you
want it to come up at any time on
demand, press Ctrl-Space. The list
can be sorted either alphabetically
or in scope order.

Next on the block are Code
Parameters. Type a procedure,
function or method name (again,
even one of your own) and the
open parenthesis and a tooltip
appears showing the parameter
list as it appears in the routine’s
declaration: name, type and any
modifier (Figure 4). The parameter

that needs to be entered is embold-
ened and as you enter more pa-
rameters, the boldness moves
along to the relevant parameters.
It’s way too cool! To get the tooltip
upon demand, press Ctrl-Shift-
Space (it won’t show if it is not
relevant).

Incidentally, one word of caution
is warranted here. Some Delphi 3
testers have encountered a prob-
lem when slightly mis-keying this
keystroke combination. It’s not a
Delphi problem, but apparently
Dell computers running Windows
95 lock up when you press Ctrl-
Alt-Space, so be warned.

The third Code Insight feature is
the tooltip expression evaluator.
This concept was first introduced
(as far as I know) in Microsoft
Visual C++ and saves you mucking
about with the Watch window
(which, incidentally, by popular
demand now has a stay on top
option on its local menu). When the
debugger is in control of the appli-
cation you just put your mouse
over some expression involving
variables or properties and the
value appears in a tooltip (see
Figure 5).

Just as an aside, I heard a tooltip-
related story involving an example
of Danish humour. In the early days
of the development of Delphi 1,
while compatibility for the upcom-
ing Windows 95 was being taken
care of, Anders Hejlsberg (the chief
architect of the product) saw a
tooltip for the first time. The Dane
saw a yellow area appear below the
mouse pointer and announced to
the closed R&D meeting that the
mouse had just urinated... Okay,
let’s move along.

➤ Figure 3

20 The Delphi Magazine Issue 20

The last Code Insight feature is
perhaps the one that has been
most asked for one way or another:
Code Templates. These can be set
up on the Code Insight page of the
environment options. When edit-
ing, you press Ctrl-J and get a list
of code templates to choose from.
The editor then types the template
in. The pre-defined templates in-
clude a full class declaration with
constructor and destructor, and an
if..then..else statement, to name
but two of the 22. If you have al-
ready started typing in a keyword,
the list offered is reduced to those
which will apply. These templates
get stored in the DELPHI32.DCI text
file in the BIN directory (the
extension stands for Delphi Code
Insight).

When you create your own tem-
plates you can insert a pipe sign (|)
to indicate where the cursor
should be left after the template
has been typed in.

Project Options
In the project options dialog, as
well as package options (they will
be described later) there is a whole
page for version information, as
used in many commercial applica-
tions. This gets included into the
project .RES file. On the Directo-
ries/Conditionals page you can
specify a directory where compiled
units are placed. Additionally, for
those of you writing screen savers,
OCXs, ActiveXs and other binaries
that require a different file exten-
sion, you can set one up on the
Application page. This adds a new
compiler directive ($Extension or
$E) into the project source file.

On the Application page, we can
see that Delphi projects now get a

revamped default project icon (see
Figure 6)

One extra option on the Compiler
page enables or disables asser-
tions. This matches another new
compiler directive, $Assertions or
$C. Assertions are available in C
and C++ and many people have
tried to come up with a suitable
implementation of them in Delphi.
We now have an Assert procedure
that can be used to test a Boolean
expression: if it fails an EAssertion-
Failed exception gets generated,
unless exceptions have been dis-
abled, whereupon you will get a
run-time error 227.

SysUtils replaces what would
have been the normal dull asser-
tion exception with a more inter-
esting one that reports the source
file and line number of the failure.
You can also customise the asser-
tion behaviour (for example to
store the failure messages in an
error log file) by assigning the
address of a custom routine to the
AssertErrorProc pointer. The pro-
cedure must be compatible with
the following procedural type:

procedure (const Message,
 Filename: string;
 LineNumber: Integer;
 ErrorAddr: Pointer);

When you’ve used assertions to
help thoroughly debug your appli-
cation, you can remove all the as-
sertion code from the EXE with the
compiler option.

New Components
There are several new components
I’ll cover later, but some fairly inde-
pendent new components added
include the following.

TAnimate encapsulates the Win32
mini-video ANIMATE control: the
thing that does the annoying file
copying animation in Windows 95
and NT 4. This supports all the pre-
defined videos (via the CommonAVI
property) and many external
soundless AVIs (using the FileName
property).

TDateTimePicker. This gives a
convenient way of choosing dates
and times. It requires the updated
version of COMCTL32.DLL that
ships with Internet Explorer 3.0.

TOpenPictureDialog and TSave-
PictureDialog are new extended
versions of TOpenDialog and
TSaveDialog. They have an area
added on the side for previewing
the selected picture. The TOpenPic-
tureDialog is now used as the prop-
erty editor for all bitmap type
properties. We can kiss the crass
choose a picture and push the button
before you see it approach from
Delphi 1 and 2 a fond farewell.

TStaticText, which is just like a
label but has a window handle,
supports being tabbed to and also
offers various border styles.

TCheckListBox is a listbox where
each item has a checkbox. The IDE
uses these here and there as does
the InstallShield set-up program.

TSplitter is a componentised
version of the window pane splitter
class from the Resource Explorer
demo app from Delphi 2. It is basi-
cally the same as presented in
Issue 18’s Delphi Clinic, although
the official one is simpler to use.

➤ Figure 5

➤ Figure 6

➤ Figure 4

April 1997 The Delphi Magazine 21

TChart. This is a component
known generally as TeeChart li-
censed from TeeMach. The compo-
nent editors allow you to order a
full version from the original ven-
dor, however on initial glances all
that seems to be disabled are a few
chart types. This component crops
up three times on the component
palette: once in its own right on the
Additional page, once as a data-
aware control (that doesn’t even
need a DataSource) on the Data Con-
trols page and once as a new
QuickReport component.

TDBRichEdit allows you to store
formatted text into a database
BLOb field.

TCoolBar. Implements the option-
ally transparent bands of controls
found in Internet Explorer 3.0.
Microsoft refer to this control as a
“rebar”. This also needs the
updated COMCTL32.DLL.

TToolBar can be placed on a
TCoolBar and caters for managing
buttons and separator areas. This
control also offers optional trans-
parency. The point of this control
is that a rebar’s bands can only
support one control. To get around
this you place a toolbar in a band,
where the toolbar can hold many
buttons. You could also use some
other container-type component
such as a panel.

Component/RTL Modifications
All components that can edit text
have Input Method Management
(IMM) support to help write prod-
ucts with Asian language support.
They have ImeMode and ImeName
properties to specify Input Method
Editors (IMEs). Also the TFont type
has a new CharSet property, for the
same reason. Interestingly enough
Borland C++ Builder, which is
based almost exclusively on the
Delphi 2 VCL, also offers these new
properties.

Additionally, SysUtils adds or
modifies a whole raft of routines to
support multi-byte character set
(MBCS) operations.

In the same vein, there is a new
string type, WideString. String is
still defined to be an AnsiString,
made of AnsiChars. A WideString is
made up of WideChars, but in other
respects operates with much the

same behind the scenes automated
memory management (except for
reference counting).

The TGraphic base class of TBit-
map, TIcon and TMetafile has had a
few things added. Most notably
there is a Palette property and an
OnProgress event. The latter may be
triggered during lengthy opera-
tions, such as loading a very large
image from disk. Also, various
graphic classes have thread-safe
support and TBitmap now treats
bitmaps as device independent
bitmaps (DIBs).

Another nice graphics touch is
that support for JPEG files has been
surreptitiously added. Consider an
application that has a TImage with
code that calls

Image1.Picture.LoadFromFile

If you pass a .BMP filename or a
.ICO, .WMF or .EMF filename then it
will load fine. If you pass a .JPG file,
it will not load. However now you
can simply add the JPEG unit to
your uses clause and it mysteri-
ously does load the file up, if neces-
sary taking care of half-toning and
other technical graphics things.
The Win32 import unit list has been
increased. As well as the ActiveX
unit, we also have ImageHlp (for
pulling apart Win32 PE files), some
units for the Microsoft and
NetScape Internet Server APIs and
MS Windows Internet extensions
(ISAPI, ISAPI2, NSAPI and WinINet), a
NetBIOS 3 unit (NB30), the Pen
Windows unit is back (PenWin),
common registry key string con-
stants (RegStr), the Windows Shell
objects for extending Windows
Explorer (ShellObj) and Windows
NT Services (WinSvc). Also, the
RichEdit unit is about three times
the size it was in Delphi 2.

Delphi 2 came with a demo in the
IPCDemos directory that imple-
mented some simple classes for
representing a Win32 event, mutex
and shared memory (via a memory
mapped file). Delphi 3 now sup-
plies a new RTL unit called SyncObjs
that has classes for events and
critical sections. It should be fairly
easy to inherit from the base
classes to support semaphores
and mutexes as well.

All versions of Delphi have had a
convenient routine available for
IDAPI programmers. The Check pro-
cedure from the DB unit takes a re-
turn value from an IDAPI call and if
it indicates anything other than
success, an EDBEngineError excep-
tion is generated with an appropri-
ate message by calling DbiError.
Delphi 2 added a similar procedure
OleCheck for OLE API calls which
generates an EOLEError exception
with an appropriate message.

Delphi 3 now adds a new one.
SysUtils defines Win32Check which
takes a Win32 API return. These are
typically Boolean values. If the
value is False, this routine calls
RaiseLastWin32Error which gener-
ates an EWin32Error exception with
a message obtained using SysEr-
rorMessage and GetLastError. If the
passed in value was True,
Win32Check just returns the value.

Under some circumstances it
will not be advisable to call
Win32Check as some messages have
a place-holder symbol which is in-
tended to be substituted with
something so this is not a foolproof
solution (see Issue 16’s Delphi
Clinic item on System error message
for an example of where this may
crop up). However, with a bit of
forethought and testing it should
prove useful.

And last of all in this section is a
real beauty. Historically, if you
wanted to store a string in a string
table resource, the approach in-
volved having a unit dedicated to
integer constants that could be
used to refer to the strings. This
was used by the .RC resource
script file that defined the string
table in terms of these constants.
The RC needed to be compiled into
a .RES file (possibly using
BRCC.EXE) and needed an appro-
priate compiler directive ($R or
$Resource) to get the resources into
the EXE. The constant unit was also
used anywhere in the project
where the strings were actually re-
quired and the string was loaded
from the resource with a call to
LoadStr or FmtLoadStr.

All that is over now with the new
resourcestring code section. It op-
erates like a var, type or const dec-
laration section and allows you to

22 The Delphi Magazine Issue 20

define symbols with associated
string values, rather like constants.
However, all resource strings are
stored as resources by the com-
piler (which also ensures that they
all have different numbers). When
a resource string is referred to, the
compiler generates code to load
the string from the resource from
whatever module (package or EXE)
that it happens to be in, using dedi-
cated code in the System unit.
Listing 1 shows the idea.

To find the resource ID of any
resource string, typecast it into the
System-defined TResStringRec re-
cord and check the Identifier
field.

During compilation these get
stored in a temporary binary
resource file with the same name
as the project, but with an STR
extension and are then bound into
the EXE along with any other
resources during the link stage.

If you are a regular VCL source
browser you will be aware that the
Exception object’s wealth of con-
structors were put in place princi-
pally for the benefit of the VCL
authors. There are several which
load resource strings: CreateRes,
CreateResFmt, CreateResHelp and
CreatesResFmtHelp. Since resource-
strings are now in use throughout
the VCL you will find all previous
occurrences of these constructors
replaced with the non-resource
versions: Create, CreateFmt, Create-
Help and CreateFmtHelp.

Component Templates
Delphi application developers
often find themselves setting up
groups of components in much the
same way in many applications.
Previously you had no choice but
to set the components, properties
and code up manually each time.
Now Delphi helps automate this
process. After painstakingly
setting up your group of compo-
nents, select them all in the Form
Designer, choose Component | Cre-
ate Component Template... and you
can add a compound component
straight onto the component pal-
ette. It won’t be a true component,
but who cares? It does the trick.

Whenever you want that group
again, pluck it from the palette and

the positioning, properties and all
the event handlers are added in-
stantaneously. If any of the event
handlers previously referred to
components in the group, then the
new event handlers’ code is gener-
ated bearing that in mind with ref-
erences to the new components
used instead.

All the details of these compo-
nent templates are stored in the
binary DELPHI32.DCT file in the
BIN directory.

Packages
One of the main gripes that Borland
Pascal and C/C++ programmers
had about Delphi when it first came
out was the size of the EXEs it gen-
erates. Each EXE had a large por-
tion of the VCL compiled into it and
so had an initial footprint of at least
180Kb. Database applications had
a footprint of 330Kb. Delphi 2
reduced these a little. Admittedly
people worry rather less these
days, with the cost of disk storage
dropping through the floor, but it
is still less than desirable having
the VCL duplicated through all
your Delphi EXEs.

Delphi 3 helps avert this prob-
lem by introducing the concept of
packages. These are DLLs with a
DPL extension (for Delphi Package
Library) that can have the various
VCL units (and any others you care
to use) compiled into them. You
can compile your required units
into as many or as few packages as
you want, which can be marked as
run-time only, design-time only or
suitable for both. The Delphi com-
ponent library is no more: design-
time compatible packages take its
place [Hooray! No more corrupted
libraries after failing to install a new
component! Editor]. Also, Delphi 3
itself is compiled using run-time
packages and so despite the mass
of new dialogs and environment

features in the IDE, DELPHI32.EXE
is only 500Kb larger than Delphi 2.

Delphi now comes with a whole
host of packages that contain all
the components from the compo-
nent palette. The names of those
installed into the environment are
mostly prefixed with DCL and
implement the various property
editors and component editors re-
quired by the components, and
contain the component registra-
tions. The others are run-time only
(you cannot install them into the
environment) and implement all
the components. The main one
that gets referenced is VCL30.DPL
and is just over 1.1Mb in size. This
includes the basic run-time library
code and basic VCL with no data-
base or Internet components. Most
of the database components
are compiled into VCLDB30.DPL
(585Kb).

The project options dialog has a
Packages page that lists the design
time packages that are installed.
You can install and remove design-
time compatible packages here, as
well as see which packages in-
stalled which components. This is
also where you decide if you wish
to compile with package support
or in the more traditional Delphi
way.

If you do compile with packages,
you can specify which packages
should be considered for linkage
(and by implication which units
will be compiled directly into the
EXE). The package requirements of
the project get stored into a tempo-
rary Windows resource file with a
.DRF extension as a custom re-
source type during compilation.
They then get bound into the EXE
during link time.

Despite packages being imple-
mented as DLLs, you should not
think of them as such. Instead, con-
sider them as a linker option that

resourcestring
 SFirst = ’This is a resource string’;
 SSecond = ’Easy to use, n’’est pas?’;
 SThird = ’Another one for good measure’;
...
 ShowMessage(SFirst);
 Application.MainForm.Caption := SSecond;
 Application.Title := SThird;

➤ Listing 1

April 1997 The Delphi Magazine 23

distributes code across binary
modules but without changing the
program semantics or organisa-
tion. You do not have to concern
yourself with calling from the EXE
to the DLL, you just call something
in a unit and Delphi sorts out ap-
propriate code to cross module
boundaries where necessary.

So to the important information.
If you compile a simple one form
project with a button that calls
ShowMessage it comes out at 195Kb
without package support and
9.5Kb with packages enabled. This
clearly means that an application
suite that features many Delphi
DLLs and EXEs can shrink in size
markedly.

Packages are intended to help
application maintenance and de-
ployment. If you need to modify a
piece of your application, you do
not have to re-deploy the whole
application, just the affected pack-
age. You also don’t need to re-
compile the whole application.

However, not everyone is over
the moon at the thought of pack-
ages pervading everyone’s hard
disks. They foresee that there can
be potential mayhem when
Borland bring out incremental re-
leases of Delphi: the packages will
all need new revisions. There may
be a practical versioning issue to
deal with, but hopefully Borland
have considered this and know
how to deal with the situation in an
adult fashion. The consensus of
many is that corporate-wide distri-
bution of Delphi applications will
be greatly helped by packages, but
smaller outfits, like shareware
authors, will probably not take
advantage of them.

You can make a package by
choosing the appropriate entry in
the Object Repository. You specify
a target file name and give a de-
scription (used principally by the
IDE’s packages dialog) and the file
gets created in the IDE. A package
source file has a .DPK extension
and is displayed “visually” in a
package editor (see Figure 7).

You can add units into the pack-
age and they are listed on the
Contains page. A point to make
clear now is that a unit cannot be
placed into two packages that will

be required (either explicitly or
implicitly) by any one particular
program. This is because all the
packages brought in by a project
live in the same name space.

Any required packages are
added onto the Requires page. Vari-
ous options like run-time only re-
strictions can be set and all these
bits get stored in the package file
as long format compiler directives.
To see the underlying file of a pack-
age, right-click on the package
editor and choose View Package
Source. An example package file is
shown in Listing 2 (with many of
the compiler switch directives
removed for brevity).

You can see that a package is
indicated by the reserved word
package and also has optional
requires and contains clauses that
get generated by the two pages on
the package editor.

When the package is compiled it
ultimately generates a .DPL file but
also an intermediate .DCP file. This
is a file that contains symbol infor-
mation from each of the units that
package contains. Additionally the
package source file itself is com-
piled into a .DCU, and .RES, .DRF
and .STR files are made as usual.

From the File | Open... menu
item you can load up a package by
opening the .DPK file (which you
can edit) or the .DPL file (which you
can’t).

The new package support brings
along various new compiler direc-
tives to help. $DesignOnly and
$RunOnly are fairly self-explanatory
and match the options available
from the package editor, however
they are only respected by the IDE.
When a package is being installed
the IDE will only accept it if it is
marked for design-time use. Also, if

it is not marked as being a run-time
package it is automatically added
to the run-time package list.

$DenyPackageUnit stops a unit
from being packaged. $Imported-
Data disables the creation of im-
ported data references for better
memory access efficiency and ef-
fectively has the same effect as
$DenyPackageUnit. $ImplicitBuild
controls how often the package
gets rebuilt.

Lastly $WeakPackageUnit is typi-
cally used to allow packages to con-
tain units that require external
DLLs but tries, where possible, not
to include the unit in the .DPL file.
Instead the .DCU compiled unit file
is compiled directly into the EXE.
This means the DLL does not nec-
essarily have to be distributed with
the .DPL. However if another unit in
the package refers to the weak
package unit, it will be compiled
into the .DPL.

If this doesn’t seem to make
sense, remember the binary pack-
age file is supposed to have every-
thing available in it that the
constituent units declare: there is
no smart linking. This means that
all import declarations in any units
contained in the package will be
compiled into the binary package
file and so there could be depend-
encies on many DLLs that aren’t
strictly required for all applica-
tions using the package. An exam-
ple of a weak package unit is the
PENWIN.PAS Pen Windows import
unit. Since not all Windows sys-
tems have the Pen Windows DLL, it
makes good sense to keep any ex-
plicit references to it out of any
packages unless strictly necessary.

➤ Figure 7

package PackageEg;
{$R *.RES}
...
{$IMAGEBASE $00400000}
{$DESCRIPTION ’A sample package’}
{$DESIGNONLY}
{$IMPLICITBUILD ON}
requires
 vcl30;
contains
 DCubeU;
end.

➤ Listing 2

24 The Delphi Magazine Issue 20

Package Collections
The Package Collection Editor
(PCE.EXE) takes multiple compiled
packages (.DPL files) and saves the
list as a .PCE file (an .INI file). When
you build the package collection
you get a binary .DPC file (Delphi
Package Collection, as opposed to
.DCP, Delphi Compiled Package).

When installing packages with
Component | Install Packages...
(which, incidentally takes you to
the equivalent of the project op-
tions Packages page) you can load a
package (.DPL) or a package collec-
tion .DPC. If you choose a package
collection, then you are presented
with the Package Collection Instal-
lation Wizard which allows you to
choose which of the constituent
packages you want to install.

This facility allows component
suite developers to supply many
design-time package libraries in
the convenient form of a single file.

Business Insight
This is the second use of the Insight
term and refers to all the new data-
base and decision support compo-
nent architecture in the product.
According to the slide in the slide-
show I saw, it turns your data into
actionable information. Well I don’t
know much about marketing, but I
know what I like. And I do like the
work done to the database support
in the product. Without further
ado, let’s press on.

New VCL Architecture
There are several third-party li-
braries that allow you to write ap-
plications that talk to certain data
formats without the use of the BDE.
This gives a smaller distribution
overhead, but was difficult to im-
plement due to TDataSet having

various BDE dependencies. It typi-
cally required modifications to the
DB VCL unit.

In order to help third party de-
velopers, these dependencies have
been removed from TDataSet and
put in a new TDataSet descendant,
TBDEDataSet, or in TDBDataSet,
which now inherits from
TBDEDataSet. This means that third
parties can now simply derive from
TDataSet. Additionally, all the BDE-
related code has moved from DB to
the DBTables unit to stop any appli-
cation using DB from pulling in the
BDE. Because of this overhaul, cer-
tain code that refers to TDataSet
may need to be changed to refer to
TBDEDataSet or TDBDataSet.

It would be nice to see an in-
depth article on writing a BDE
replacement using this new archi-
tecture that covers more than the
Borland-supplied information.
Would anybody care to take up the
challenge?

There is default BLOb caching
(which can be turned off using the
TDataSet property CacheBlobs) to
speed up scrolling through
TDBCtrlGrids which have BLOb
fields displayed. And yes,
TDBImages and TDBMemos can now be
placed on a control grid. In the ver-
sion I am currently testing,
TDBRichEdits cannot.

Database Explorer
And BDE Administrator
The Database Explorer (or SQL
Explorer as it calls itself in the
Client/Server Suite) is now up to
version 2.0. It sports many new fea-
tures including the ability to drag
stored procedures onto a form. It
also allows you to edit various SQL
objects, for example any view
or stored procedure, InterBase

generators and exceptions, Oracle
packages and package bodies.

There is now a menu option for
getting to the BDE Administrator (a
much more user friendly applica-
tion than the BDE Config app used
to be). The BDE Administrator is
based on the look and feel of the
Database Explorer. In fact this is
almost certainly a big code-sharing
exercise since they both use the
same INI-style configuration file,
DBX.DBI. You can also invoke the
ODBC Administrator from the
Object menu.

One of the menus also allows you
to set up transaction isolation level
for the database connections.

New BDE
The new BDE is up to version 4 and
now natively supports multi-byte
character sets (MBCS support).
Additionally it has two new native
drivers for FoxPro and Access
tables. These drivers make use of
Microsoft’s DAO connectivity, but
unfortunately rely on you already
having a properly licensed product
that implements DAO, such as
Microsoft Office 95 or 97.

If you feel that you need a native
BDE driver that does not exist, and
you also feel you can commit the
time and patience to writing one,
Borland may have something for
you. The long-promised IDAPI
driver SDK is now being made avail-
able by Borland. At the time of writ-
ing this is best obtained by
speaking to Borland Developer
Relations.

Distributed Datasets:
N-Tier Computing?
Application partitioning is very
fashionable nowadays. Delphi 2
made a token gesture in the

April 1997 The Delphi Magazine 25

direction of splitting UI code away
from data manipulation code with
the data module. Delphi 3 allows
full blown three-tier systems to be
implemented using a new VCL fea-
ture called remote datasets.

What this means is that an appli-
cation can manipulate data in data-
base tables using a dedicated
dataset-based component but
have no direct connection to the
data. It also has no need for links to
the BDE or any other database ac-
cessing technology. It talks to some
data server application (or data
broker as it is often referred to)
using DCOM and the server appli-
cation worries about the actual
communication with the data in
the database and applying appro-
priate business logic and data
validation that may be necessary.

This was a reasonably easy
mechanism for Borland to imple-
ment because of the improved
COM support in Delphi 3 (which we
will look at in depth next month) as
well as the clean split in the data-
base architecture between the
dataset components and the BDE.
There are three new components
on the Data Access page of the com-
ponent palette that are used to
make a remote data server and a
data client.

The TProvider component is
used in the server application and
packages data up from a BDE
cursor via a TTable, TQuery or
TStoredProc component into a data
packet (the Data property) repre-
sented as a variant array of bytes
for easy COM distribution. It con-
tains both the data and appropri-
ate metadata (schema information
and constraint information). If you
don’t want to explicitly deal with
data change errors using the
provider’s OnUpdateError event, or
indeed use any other events it of-
fers (such as BeforeUpdate and
AfterUpdate or BeforeGetData and
AfterGetData or OnDataRequest)
then you don’t need to use a
provider object at all. The normal
BDE dataset objects all have a
Provider property that returns a
TProvider of their own.

In the data client application a
TRemoteServer is used to connect up
to the server application. To

connect to a server app on another
machine, you have a ComputerName
property. Also, there is a Server-
Name property which takes the serv-
er’s ProgID (OLE class name). The
TRemoteServer uses DCOM (distrib-
uted COM) to talk to the server
app, but you can also use OLE
Automation via the AppServer
variant property.

In order for data aware controls
in the client app to get access to the
data in the server app, you use a
TClientDataSet which connects, via
the remote server component, to
the provider in the server app. The
TClientDataSet supports data edit-
ing and persistence. The server
data packet is represented by a
variant byte array property called
Data (as it is in the provider). Any
changes made to the data are
stored in another variant array
property called Delta.

To update the data in the server
app the client app calls TCli-
entDataSet.ApplyUpdates. This sim-
ply calls the ApplyUpdates method
of the data broker’s provider. Data
errors can then be dealt with by the
provider. The data server project
(which is a COM server) needs to
be registered in order for any cli-
ents to be able to talk to it.

Note that each connection to the
data broker that refers to a remote
data module will cause a separate
instance of the data module to be
created. If you wish to use a
TDatabase component to set up the
database connection then that

must be placed on a normal data
module. If you place it on the re-
mote data module you will get
problems due to multiple database
objects using the same alias name.

If the client wants the server to
return custom data it can call the
server provider’s DataRequest
method like this:

ClientDataSet1.Data :=

 ClientDataSet1.Provider.DataRequest(

 ’select * from orders’)

The provider object’s OnDataRe-
quest event will trigger and your
handler can process the request
and therefore return the required
data.

This approach of using COM to
communicate the data means that
the client application has no BDE
overhead, all it needs is the
DBCLIENT.DLL from the BDE direc-
tory: about 145kb in the field test I
was using.

Incidentally, if you wish the data
broker to be on one machine and
the client to be on another machine
running Windows 95, you will need
to download DCOM for Windows 95
from Microsoft’s Web site and
install it.

Decision Cube
If you have a keen memory you may
remember that one-time Borland
product Quattro Pro for Windows
had a nice data pivot cross-tab
facility. Some nice developers in
Borland were implementing similar

➤ Figure 8

26 The Delphi Magazine Issue 20

functionality for another project
that seems to have fallen through,
so it has been componentised for
use in Delphi 3. However source
code is not supplied in any version
as Borland feel they may wish to
use it in their own products in the
future and don’t want their algo-
rithms to be known by potential
competitive product writers.

Decision Cube refers to a set of
decision support components that
allow you to generate cross-tab
graphs and charts to get views and
summaries of your data from
varying perspectives.

The TDecisionCube is a non-visual
component that acts as a multi
dimensional data store connected
to a dataset. Typically the dataset
is an SQL expression in a TQuery
descendant structured in an appro-
priate way. The cube maintains an
image of the data in such a way that
it can perform various manipula-
tions without having to re-query
the original dataset.

In truth the cube’s dataset is usu-
ally a TDecisionQuery, which has a
component editor to help set it up
quite easily, although you can use

a normal TQuery or TTable if you
like, with the required set-up done
manually. The SQL expressions
that can be used to populate a de-
cision cube must have groups and
summaries defined. A TDecision-
Source component connects to a
TDecisionCube and represents the
current pivot state. The remaining
three (visual) components connect
to a TDecisionSource. The TDeci-
sionPivot is used to identify what
fields are used to display the sum-
mary view of the data: buttons al-
low you to open and close decision
cube dimensions.

A TDecisionGrid displays the sin-
gle or multi-dimensional data and a
TDecisionGraph (which is based on
a TChart) shows the data graphi-
cally. The graph and grid compo-
nent automatically redraw
themselves when the dimensions
are changed.

The components have been
designed to allow drag and drop
operations to change which order
the fields or decision cube dimen-
sions are in, and to allow you to
drill down from a view where sum-
mary data is displayed only for a

particular value into general sum-
mary data and then full data view.
A simple SQL expression such as:

SELECT ShipDate,
 PaymentMethod, Terms,
 SUM(ItemsTotal)
FROM ORDERS
GROUP BY ShipDate,
 PaymentMethod, Terms

can give such output as displayed
in Figure 8 with practically no extra
set-up required.

And Finally
That takes up all the space I am
allowed this month. Next month we
will look at all the new COM, OLE,
ActiveX and Web-based features
that are new in Delphi 3. Until
then...

Brian Long is a UK-based freelance
Delphi and C++ Builder consultant
and trainer. He is available for
bookings and can be contacted by
email at blong@compuserve.com
Copyright ©1997 Brian Long
All rights reserved

April 1997 The Delphi Magazine 27

	IDE Updates
	Code Insight
	Project Options
	New Components
	Component/RTL Modifications
	Component Templates
	Packages
	Package Collections
	Business Insight
	New VCL Architecture
	Database Explorer And BDE Administrator
	New BDE
	Distributed Datasets: N-Tier Computing?
	Decision Cube
	And Finally

